
 
 

 

 

 

 

 

EUBrazilCC 

EU-Brazil Cloud infrastructure Connecting federated 
resources for Scientific Advancement 

 

5рΦп ς ±ŀƭƛŘŀǘƛƻƴ wŜǇƻǊǘ ƻƴ 9¦.ǊŀȊƛƭ// 
ǇƭŀǘŦƻǊƳ 

 

Contract number: FP7-614048 / CNPq 490115/2013-6 

Start Date of Project: 1 October 2013 

Duration of Project: 28 months 

Work Package: WP5 ς Use Cases 

Due Date: M28 ς 31/01/2016 

Submission Date: 02/02/2016 

Partner Responsible for the 
Deliverable: 

Universitat Politècnica de València ς UPV 

Dissemination Level: PU ς Public 

Nature: R ς Report 

Author(s): Erik Torres, Ignacio Blanquer ς UPV 

Reviewer(s): Daniele Lezzi (BSC), André Costa (PUC-Rio) 

 

 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 2 of 55 

 

 

Change Log 

Version Date Description Author(s) 

v1.0 15/12/2015 Initial Table of Contents & Draft Erik Torres, Ignacio Blanquer 

V2.0 01/01/2016 General description on the validation  Ignacio Blanquer 

V3.0 05/01/2016 
Introduction of all the evaluation 
tables and basic usage scenarios. 

Ignacio Blanquer 

V4.0 08/01/2016 
Consolidated information about 
evaluation Ignacio Blanquer 

V5.0 18/01/2016 UNEW and BSC 
Jacek Cala, Daniele Lezzi, Mariano 
Vazquez, Alfonso Santiago 

V6.0 19/01/2016 LNCC & editing A. Tadeu, I. Blanquer 

V7.0 19/01/2016 CMCC contributions S. Fiore 

V8.0 21/01/2016 First candidate release Ignacio Blanquer 

V9.0 28/01/2016 Release to review 
Israel Pinto, Pamela Llanes, 
Ignacio Blanquer 

V10.0 02/02/2016 Changes from reviewers applied Sandro, Jacek, Ignacio 

 

Document Review  

Review Version Date Reviewers Comments 

Draft v9.0 28/01/2016 Daniele Lezzi Included in the text 

Reviewed V10.0 02/02/2016 André Costa Included in the text 

     

    

  



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 3 of 55 

 

 

Table of Contents 

 Scope of the document ................................................................................................. 7 

 Target Audiences ........................................................................................................... 7 

 Structure ........................................................................................................................ 7 

 Terms and definitions .................................................................................................... 8 

 General description of the final platform architecture ................................................. 8 

 Description of the components ..................................................................................... 9 

2.2.1. Fogbow ............................................................................................................................... 9 

2.2.2. Infrastructure Manager (IM) ............................................................................................ 12 

2.2.3. mc2 .................................................................................................................................... 12 

2.2.4. CSGRID .............................................................................................................................. 13 

2.2.5. COMPSs ............................................................................................................................ 14 

2.2.6. e-Science Central .............................................................................................................. 15 

2.2.7. PDAS ................................................................................................................................. 16 

 Description of the usage scenarios.............................................................................. 17 

2.3.1. Basic instantiation of a predefined VMI ........................................................................... 18 

2.3.2. Instantiation and configuration of multiple VMs from basic VMIs. ................................. 19 

2.3.3. Running batch jobs on clusters or cloud deployments .................................................... 21 

2.3.4. Running a parallel application on the cloud using COMPSs. ............................................ 22 

2.3.5. Deploying a workflow engine for fine grain heterogeneous workflow on the cloud. ..... 23 

2.3.6. Deploying a customized PDAS cluster for data analytics ................................................. 24 

 Matrix of usage ............................................................................................................ 25 

 Assessment procedure ................................................................................................ 25 

 Requirements assessment ........................................................................................... 26 

3.3.1. Use Case 1 ........................................................................................................................ 27 

3.3.2. Use Case 2 ........................................................................................................................ 31 

3.3.3. Use Case 3 ........................................................................................................................ 34 

 General assessment. .................................................................................................... 40 

3.4.1. Infrastructure Manager .................................................................................................... 41 

3.4.2. Fogbow ............................................................................................................................. 42 

3.4.3. COMPSs-PMES .................................................................................................................. 45 

3.4.4. e-Science Central .............................................................................................................. 47 

3.4.5. mc2 .................................................................................................................................... 48 

3.4.6. CSGRID .............................................................................................................................. 49 

3.4.7. PDAS ................................................................................................................................. 51 

 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 4 of 55 

 

 

List of figures 

Figure 1: Components and interaction of the EUBrazilCC Platform .......................................................... 8 

Figure 2: Components and interaction of the EUBrazilCC Platform .......................................................... 9 

Figure 3: Fogbow Architecture ................................................................................................................. 10 

Figure 4: Fogbow Allocation Manager Architecture ................................................................................ 11 

Figure 5: CSGrid middleware overview .................................................................................................... 13 

Figure 6: COMPSs interoperability in EUBrazilCC ..................................................................................... 15 

Figure 7: Deploying VMIs using the fogbow dashboard .......................................................................... 19 

Figure 8: Deploying VMIs on fogbow using IM. ....................................................................................... 20 

Figure 9: Log in ......................................................................................................................................... 22 

Figure 10: Job parameterization and execution ....................................................................................... 22 

Figure 11. The IM web interface to manage and stop an e-SC engine VM instance. .............................. 24 

 

List of tables 

Table 1: Matrix of usage of components in the scenarios. ........................................................ 25 

Table 2: UC2 Requirements completeness ................................................................................ 33 

Table 3: Assessment of Infrastructure Manager ........................................................................ 42 

Table 4: Assessment of fogbow ................................................................................................. 44 

Table 5: Assessment of PMES through mc2 ............................................................................... 45 

Table 6: Assessment of COMPSs ................................................................................................ 46 

Table 7: Assessment of eScienceCentral .................................................................................... 48 

Table 8: Assessment of mc2 ....................................................................................................... 49 

Table 9: Assessment of CSGRID .................................................................................................. 50 

Table 10: Assessment of PDAS ................................................................................................... 53 

  



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 5 of 55 

 

 

Disclaimer 

EUBrazilCloudConnect EU-Brazil Cloud infrastructure Connecting federated resources for 
Scientific Advancement (2013-2015) όƘŜǊŜƛƴŀŦǘŜǊ ά9¦.wŀȊƛƭ//έύ is a Small or medium-scale 
focused research project (STREP) funded by the European Commission under the Cooperation 
Programme, Framework Programme Seven (FP7) Objective FP7-ICT-2013.10.2-EU-Brazil 
Research and Development cooperation, and the National Council for Scientific and 
Technological Development of Brazil (CNPq) of the Brazilian Ministry of Science and Technology 
(MCT) under the corresponding matching Brazilian Call for proposals MCT/CNPq 013/2012. 

This document contains information on core activities, findings, and outcomes of EUBrazilCC 
ǇǊƻƧŜŎǘΣ ŀƴŘ ƛƴ ǎƻƳŜ ƛƴǎǘŀƴŎŜǎΣ ŘƛǎǘƛƴƎǳƛǎƘŜŘ ŜȄǇŜǊǘǎ ŦƻǊƳƛƴƎ ǇŀǊǘ ƻŦ ǘƘŜ ǇǊƻƧŜŎǘΩǎ External 
Expert Committee. Any references to content in both website content and documents should 
clearly indicate the authors, source, organization and date of publication. 

The document has been produced with the co-funding of the European Commission and the 
National Council for Scientific and Technological Development of Brazil. The content of this 
publication is the sole responsibility of the EUBrazilCC Consortium and its experts and cannot 
be considered to reflect the views of the European Commission nor the National Council for 
Scientific and Technological Development of Brazil. 

 

 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 6 of 55 

 

 

Executive Summary 

The purpose of the deliverable D5.4 άValidation Report on EUBrazilCC platformέ is two-fold. 
First, this deliverable includes a quantitative and qualitative assessment of user scenarios, 
platform components and infrastructure resources. Second, this deliverable also describes the 
special features added to the different components of the EUBrazilCC platform and the general-
purpose use cases that can be implemented on top of it.  

The EUBrazilCC platform comprises 7 components that address scientific gateways, data 
analytics, data workflow execution, scalable parallel programming, automatic infrastructure 
deployment, batch-queue based and cloud resource federation. By combining the components 
users can deploy a variety of virtual appliances from single VMs to scalable parallel programs 
or data analytic clusters, on top of a federated infrastructure. Components are interoperable 
and expose a well-defined interface that enable adding their features. For example, the 
Leishmania Virtual Laboratory makes use of Infrastructure Manager (IM) to deploy and 
autoconfigure several VMs to provide elasticity, and IM delegates on fogbow the brokering of 
resources on the federated infrastructure. 

The EUBrazilCC platform has been designed with a user-oriented focus. We started identifying 
40 user requirements that were considered for the integration and improvement of the 
components. A validation of those requirements has been performed and accepted by the end-
users of the Use Cases. All the mandatory requirements were addressed. In total the degree of 
completion of all the requirement is of 98.75%. User satisfaction went over 4.5 in all the user 
scenarios, with the higher score on the third one (biodiversity and climate change). 

The EUBrazilCC components were also evaluated by the application developers who analyse 
their Performance, Error management, Scalability, Completion, Interoperability, Learning 
curve, Convenience and Robustness, in a scale from 1 to 5, being 5 the maximum. The average 
mark obtained was 4.6 out of 5, above the expected KPI threshold (4).  

Overall, the opinion of end-users and developers on the components of EUBrazilCC was good, 
outlining the high degree of international cooperation. All the use cases described involve 
components from Europe and Brazil, which has led to the creation of sustainable international 
research communities.  

  



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 7 of 55 

 

 

1. INTRODUCTION 

 Scope of the document 

This document describes the validation of the components and of the use cases performed by 
users of the infrastructure and developers of the platform. The document also serves as 
guideline to understand the development of applications and their deployment on the 
EUBrazilCC infrastructure, using the federation services. This document is comprehensive and 
contains additional technical references for readers who want to develop / deploy their own 
applications on the infrastructure.  

 Target Audiences 

The document is intended for different profiles. First, users interested on the applications can 
check the requirements fulfilled by the developed applications and access the running 
community instances or find guided instructions to deploy their own instances. Second, new 
application developers will find and evaluation of the functionality of the different components 
of the EUBrazilCC platform, performed by the EUBrazilCC application developers. For additional 
information on how the user scenarios have been developed, the reader should refer to D5.3 
άCƛƴŀƭ ǊŜǇƻǊǘ ƻƴ ¦ǎŜ Cases LƳǇƭŜƳŜƴǘŀǘƛƻƴέΦ aƻǊŜ ŘŜǘŀƛƭǎ ƻƴ Ƙƻǿ ǘƘŜ EUBrazilCC components 
interact Ŏŀƴ ōŜ ŦƻǳƴŘ ƻƴ 5сΦп άLƴǘŜǊƻǇŜǊŀōƛƭƛǘȅ ǘŜǎǘƛƴƎ ǊŜǇƻǊǘέΦ   

This evaluation may guide new application developers to understand the suitability of the 
different components of the platform for their applications or components. Different usage 
scenarios are described in a generic way, to help users to identify the rightmost combination of 
components.  

Finally, this document serves as a brief internal user guide for the EUBrazilCC consortium to 
document and describe the specific configurations and features of the different components 
integrated in EUBrazilCC, to make them work together.  

Non-ICT readers may skip section 2 and concentrate in section 3, especially in subsection 3.3. 
ICT readers should proceed sequentially along the sections to understand how EUBrazilCC 
platform works. 

 Structure 

This document is structured into 4 main sections (plus this one). Section 2 describes briefly the 
EUBrazilCC software architecture and the advances performed in each one of the components 
in the frame of the project. This section also includes descriptions and instructions for six 
generic scenarios, from the simplest deployment of a VM to the deployment of a customised 
data analytics cluster. Section 3 deals with the evaluation of the use cases and the components. 
Finally, section 4 ends with the conclusions. 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 8 of 55 

 

 

 Terms and definitions 

Some terms, acronyms and abbreviations used throughout this document are summarised in 
annex I. 

2. Adoption of EUBrazilCC Components 

 General description of the final platform architecture 

The EUBrazilCC platform architecture involves seven components structured at three different 
layers: infrastructure federation and management, execution services and data analytics. Figure 
1 shows the seven components and their interactions. Extensive descriptions of the 
components are provided in Deliverable D3.4 (fogbow), D3.3 (CSGRID), D4.2 (e-SC and 
COMPSs), D4.3 (mc2) and D4.4 (PDAS). 

 
Figure 1: Components and interaction of the EUBrazilCC Platform 

Á Parallel Data Analysis (PDAS): Data analysis framework used for scientific data 
(ophidia.cmcc.it). 

Á eScienceCentral: Cloud-enabled Fine-grain workflow engine 
(www.esciencecentral.co.uk). 

Á COMPSs-PMES: Platform-agnostic distributed computing programming framework 
(compss.bsc.es). 

Á My Scientific Computing Cloud (mc2): Rapid Prototyping Tool for Scientific Gateways 
(www.lncc.br). 

Á Infrastructure Manager (IM): Deployment and cloud broker service supporting multiple 
back-ends (www.grycap.upv.es/im). 

Á Fogbow: Federation technology for clouds, exposing an OCCI interface 
(fogbowcloud.org). 

Á CSGRID: Unified batch submission for heterogeneous HPC systems (www.puc-rio.br). 

http://www.esciencecentral.co.uk/
http://compss.bsc.es/
http://www.lncc.br/
http://www.grycap.upv.es/im
http://fogbowcloud.org/
http://www.puc-rio.br/


 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 9 of 55 

 

 

Figure 2 shows all possible interactions of the EUBrazilCC platform components. Users can 
directly use the fogbow dashboard or the fogbow client to deploy predefined VMIs in a local 
cloud or the federation. A user can also access the system through a specific use case 
application. A use case application can make use of IM to configure multiple coordinated VMs, 
use CSGRID (directly or through mc2) to run jobs on different heterogeneous resources, or 
develop the application using COMPSs, whose instances can be deployed through PMES, also 
interacting with fogbow and IM. Multiple on-premise IaaS can be used through the OCCI or 
native interface of fogbow, which implements the order and federation concepts to link the 
resources of the infrastructure. VMIs are stored on a third-party catalogue and retrieved using 
vmcatcher. 

 
 

Figure 2: Components and interaction of the EUBrazilCC Platform 

 Description of the components 

2.2.1. Fogbow 

Fogbow is the federation for IaaS framework entirely developed in the frame of the EUBrazilCC 
project. The architecture of the Fogbow federation consists of two main components: the 
Membership Manager and the Allocation Manager (see Figure 3).    



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 10 of 55 

 

 

 
Figure 3: Fogbow Architecture 

One of the functionalities of the Membership Manager is finding out which members of the 
federation are currently active. It follows a gossip-style synchronization protocol in order to 
discover the address of those Allocation Managers that are known to other Membership 
Managers, which exchange periodic information with each other to keep their membership 
information updated. The Allocation Manager running at a given site will periodically interact 
with its associated Membership Manager, running either at the local or a remote site, notifying 
its availability and retrieving the list of other currently active Allocation Managers. 

A client interacts with the federation by sending requests to one of the Allocation Managers 
that it is able to access. The Allocation Manager performs a three-step authentication and 
authorization procedure. At the first step, the Allocation Manager checks if the credentials 
presented by the federation user are authentic and, in this case, checks if the authenticated 
federation user is authorized to execute the requested operation. At the second step, the 
Allocation Manager maps the credentials of the federation user to a credential that is used to 
access the underlying local cloud. The native authentication and authorization mechanisms of 
the cloud are invoked to check if the request can be processed with this credential. Finally, at 
the third step authentication and authorization procedures between Allocation Managers are 
performed, establishing to which other Allocation Managers local resources should be 
provided, as well as from which other Allocation Managers resources can be requested. 

The Allocation Manager architecture also includes behavioral plugins, which are used to 
customize key functions of the Allocation Manager's business logic such as authentication, 
authorization, prioritization, and accounting, among others. Figure 4 shows the architecture of 
the Allocation Manager. 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 11 of 55 

 

 

 

Figure 4: Fogbow Allocation Manager Architecture  

In a Fogbow federation users interact with the Allocation Manager using client software. The 
Allocation Manager provides an API that follows the Representational State Transfer (REST) 
style, and implements the OCCI standard. Additionally, it also implements extensions to the 
OCCI standard, which are useful when dealing with a federation of IaaS cloud providers. In the 
following, we first review the OCCI standard, and then present how we have extended it to 
ƛƳǇƭŜƳŜƴǘ ǘƘŜ CƻƎōƻǿΩǎ !tLΦ 

The Open Cloud Computing Interface (OCCI)1 is a community-specified standard published by the 
Open Grid Forum (OGF). It specifies a set of protocols and interfaces to manage cloud resources, 
using the REST approach for interacting with services. The complete specification consists of a 
suite of documents including the OCCI Core, the OCCI Infrastructure, and the OCCI HTTP 
Rendering. In addition to supporting the three resource kinds defined in the OCCI infrastructure 
specification, i.e. Network, Compute and StorageΣ CƻƎōƻǿΩǎ !tL ƛƳǇƭŜƳŜƴǘǎ ǎǳǇǇƻǊǘ ǘo two new 
resource kinds, namely: Member, and Order. 

The new Member resource kind allows clients to obtain membership information about the 
federation. It also allows clients to query information regarding quotas assigned by a particular 
federation member to a particular federation user, as well as accounting information, which can 
ōŜ ǇǊƻǾƛŘŜŘ ƻƴ ŜƛǘƘŜǊ ŀ ǇŜǊ ƳŜƳōŜǊΩǎ ōŀǎƛǎΣ ƻǊ ŀ ǇŜǊ ŦŜŘŜǊŀǘƛƻƴ ǳǎŜǊ ōŀǎƛǎΦ Lƴ ōƻǘƘ ŎŀǎŜǎΣ ǘƘƛǎ 
operation is subject to privacy constraints. 

The new Order resource kind allows users to asynchronously request the instantiation of one of 
the standard resource kinds (Network, Compute or Storage). The main purpose of this extension 
is to allow the appropriate management of requests that do not necessarily need to be 
immediately fulfilled, or that need to be fulfilled at a particular member of the federation 
όǘŀǊƎŜǘŜŘ ŀƭƭƻŎŀǘƛƻƴΣ ƛƴ CƻƎōƻǿΩǎ ǇŀǊƭŀƴŎŜύΦ CƻǊ ƛƴǎǘŀƴŎŜΣ ƛƴ ǘƘŜ ŦŜŘŜǊŀǘƛƻƴ ŎƻƴǘŜȄǘ ǘƘŜ ǳǎŜǊ 
might want to wait for resources to become available at a remote member, or schedule the 
instantiation of a resource to a future time. On the other hand, targeted allocation allows clients 
to instantiate resources at one member, but submitting its request to another member. This 
obviates the need to expose the endpoints of all federation members to all federation clients. In 
this setting, a user will typically interact with a single Allocation Manager (that manages its local 

                                                      

1 http://occiwg.org 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 12 of 55 

 

 

cloud), even when requesting resources at other (remote) clouds. Upon issuing an order request, 
the cƭƛŜƴǘ ǊŜŎŜƛǾŜǎ ŀ ƘŀƴŘƭŜ ǘƻ ǘƘŜ ƻǊŘŜǊ ǘƘŀǘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ƳƻƴƛǘƻǊ ƛǘǎ ǎǘŀǘŜ ŀǘ ǘƘŜ ŎƭƛŜƴǘΩǎ ǿƛƭƭΦ 

An order specifies not only the kind of resource and the corresponding attributes for the 
resource to be instantiated, but also a validity period for the order. The order is only fulfilled 
after the beginning of the validity period and before its end. Optionally, an order may specify the 
location where it should be served. If a location is not informed, the Allocation Manager first 
tries to allocate the resource in the local cloud, and if not successful, it automatically cloudbursts 
the allocation to another member of the federation that can fulfill the order. Orders can be of 
two types: one time and persistent. One time orders are fulfilled at most once, while persistent 
orders can be fulfilled multiple times. The latter is useful when there is a high enough probability 
of the allocated resource to be preempted. In this case, a persistent request will allow a 
replacement resource to be automatically instantiated whenever the previously allocated 
resource is preempted. This extension provides a service that is similar to what is currently 
ǇǊƻǾƛŘŜŘ ōȅ !²{ ŦƻǊ ƛǘǎ άǎǇƻǘέ ƛƴǎǘŀƴŎŜǎΦ 

2.2.2. Infrastructure Manager (IM) 

IM (www.grycap.upv.es/imύ ƛǎ ŀ άŘŜǾ-ƻǇǎέ ǎŜǊǾƛŎŜ ǘƘŀǘ ŜƴŀōƭŜǎ ŘŜǇƭƻȅƛƴƎ ŀƴŘ ŎƻƴŦƛƎǳǊƛƴƎ 
virtual appliances on the cloud. IM is used in the context of EUBrazilCC to cross-configure 
multiple-VM based virtual appliances and to be agnostic about the cloud infrastructure. IM is 
able to deploy VMIs on different cloud backends, including EC2, Azure, Google cloud, OCCI, 
Docker, libvirt and, thanks to EUBrazilCC, fogbow. 

In the context of EUBrazilCC, IM has been extended to support fogbow-based infrastructures 
by integrating the fogbow client as a plug-in. Despite the OCCI compatibility of fogbow already 
guarantees the compatibility with IM (which already supports OCCI through the rOCCI client 
implementation), the extended features of OCCI are not available through rOCCI. 

A new infrastructure type (fogbow) was created. The next line defines a sample line for 
accessing a fogbow endpoint: 

id= eubcc; type = FogBow; proxy = file( /tmp/eubccproxy.pem )  ; 

host = https://fbgrycap.i3m.upv.es:8182  ; token_typ e = VOMS  

Where eubccproxy.pem is a EUBrazilCC VOMS proxy and fbgrycap.i3m.upv.es is the fogbow 
endpoint for the UPV. 

2.2.3. mc2 

mc2 is a toolset for the rapid prototyping of science gateways. This toolset is used in the context 
of EUBrazilCC to configure the user interfaces of the cardiovascular simulation services 
ŘŜǾŜƭƻǇŜŘ ƛƴ ¦ǎŜ /ŀǎŜ нΣ ōŜŎŀǳǎŜ ƻŦ ƛǘǎ άȊŜǊƻ ǇǊƻƎǊŀƳƳƛƴƎέ ŀǇǇǊƻŀŎƘ ŀƴŘ Ŝŀǎe of deployment. 
Its pluggable architecture allows it to be used over different job-based execution environments. 

In the context of the EUBrazilCC, mc2 adaptors have been developed to provide support for 
PMES-BES (in its previous version, mc2 only provided support for direct access to Unix-based 

http://www.grycap.upv.es/im


 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 13 of 55 

 

 

job management and also for the CSGrid middleware) and also for VOMS authentication (in its 
previous version, mc2 only provided support to local and LDAP-based authentication). Besides, 
its architecture has been extended to cater for diverse visualization plugins, including a VTK-
based plugin aimed at the Use Case 2 of EUBrazilCC. 

2.2.4. CSGRID 

CSGrid is a system for management and integration of applications in a distributed and 
heterogeneous computing environment.  It provides a collaborative and extensible 
environment to abstract the use of the computational resources, and providing end-users and 
domain-specific applications with functionalities for creating, sharing and accessing distributed 
ǊŜǎƻǳǊŎŜǎΣ ǎǳŎƘ ŀǎ ǇǊƻƧŜŎǘǎΩ Řŀǘŀ ŀƴŘ ŜȄŜŎǳǘŀōƭŜ ǇǊƻƎǊŀƳǎΦ The combination of the CSGrid 
system with OpenBus (Figure 5) builds up the CSGrid middleware. 

 

 
Figure 5: CSGrid middleware overview 

2.2.4.1. CSGrid Server and Middleware Services 

The CSGrid Server is a component that intermediates requests from users and client 
applications to data repositories and execution nodes. The CSGrid data repository is an area 
where the CSGrid server stores the user database, user projects and algorithms execution 
binaries. The user database keeps data about users and their permissions. The projects area has 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 14 of 55 

 

 

a directory for the projects of each user and keeps descriptor files that hold information about 
projects and the projects files. The algorithm repository has a hierarchical structure that uses 
directories to represent each algorithm. Each directory contains a configuration file, the 
binaries and subfolders containing the algorithm versions. 

The CSGrid server provides a set of services for the interaction of users and client applications, 
which are instantiated and exposed by the CSGrid Server through RMI (Remote Method 
Invocation) interfaces, for Java applications that are built using CSGrid Development Kit and 
through CORBA, by the OpenBus middleware, that allows external applications and services to 
access CSGrid. 

2.2.4.2. SGA 

The SGA is a component that exposes interfaces to allow remote execution of algorithms on 
execution host machines, and the monitoring of their status by the middleware (e.g. current or 
historical processing anŘ ǎǘƻǊŀƎŜ ǳǎŀƎŜύΦ Lǘ ŀƭǎƻ ŀƭƭƻǿǎ ǉǳŜǊȅƛƴƎ ǘƘŜ ƳŀŎƘƛƴŜǎΩ ŎƻƴŦƛƎǳǊŀǘƛƻƴǎΣ 
their execution platforms, environment attributes and their current status. The SGA interface 
is flexible and can be instantiated in different scenarios. It can be deployed as a daemon in host 
machines to provide an execution interface to these hosts individually, or it can be set as a 
gateway to 3rd party Resource Management Systems. In the former case, each host machine 
becomes a server for the execution of algorithms. In the latter case, a module inside the SGA 
implementing the integration with a specific system is used, and the SGA intermediates 
execution requests from CSGrid to the other systems and manages these executions. 

2.2.4.3. OpenBus 

OpenBus is a CORBA-based middleware used to integrate multi-platform and multi-language 
systems based on a service-oriented architecture. It offers a service directory, access control 
mechanisms and peer-to-peer communication. External applications use the OpenBus 
development kit (OpenBus SDK) to authenticate, publish, discover and access services 
components, based on the usage policies configured by the OpenBus administrator. 

2.2.5. COMPSs 

COMPSs is a framework, composed of a programming model and a runtime system, which aims 
to ease the development and deployment of distributed applications and web services. The 
core of the framework is its programming model, which allows the programmer to write 
applications in a sequential way and execute them on top of heterogeneous infrastructures 
exploiting the inherent parallelism of the applications. 

COMPSs is able to execute the tasks composing the application on VMIs dynamically deployed 
according to the actual load of the execution. Several connectors exist to manage resources and 
to query about details concerning the execution cost of multiple cloud providers during the 
same execution. 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 15 of 55 

 

 

In the context of EUBrazilCC, COMPSs has been made interoperable with fogbow through the 
extension of the already available OCCI connector (that implements an interface to the rOCCI 
client) that supports fogbow authentication. The use of fogbow eases the configuration of 
COMPSs because just one provider has to be described (see Figure 6) that transparently 
provides cloudbursting capabilities. 

 

 
Figure 6: COMPSs interoperability in EUBrazilCC  

The COMPSs framework includes the PMES service, a tool that manages the deployment and 
monitoring of applications in distributed environments. PMES implements a standard BES 
interface that hides to client applications the intricacies of the deployment and 
contextualization operations, the installation of the application packages, the required libraries, 
and the monitoring processes. A dashboard is also available for the configuration of the user 
cloud environment. In EUBrazilCC PMES has been adopted to configure and deploy the 
optimization component of the UC2, which explores the possible solutions of a given parameter 
and invokes a COMPSs application for each of the considered configurations. Through the use 
of PMES the application is exposed as as service allowing to be easily invoked by an external 
client, as the UC2 gateway implemented through mc2. 

2.2.6. e-Science Central 

e-Science Central (e-SC) is a workflow management system and has been used in the project 
mainly as the processing engine for the Leishmaniasis Virtual Laboratory. The phylogenetic 
pipelines exposed to the users via LVL are implemented as workflows in e-SC. The system offers 
a set of APIs that allow the LVL to start and monitor workflow enactment and collect output. 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 16 of 55 

 

 

In the context of the UC1 the Workflow API of e-SC has been extended mainly in two directions: 
(1) to allow more detailed description of workflow parameters, so that the LVL can expose them 
to the user automatically, (2) to improve sharing of workflows between e-SC users. 

During the design process a developer usually includes several blocks in a workflow and each 
of the blocks has dozens of parameters to set. Most of these parameters are set with their 
default values, some of them are customised by the workflow developer during design time, 
yet some are best to be exposed to the end users (e.g. the accuracy of the analysis). With the 
proposed extension an external system (such as the LVL) can ask about which block parameters 
are exposed from the workflow and then query details of each of the parameters. For example, 
the workflows - eubcc - ml_pipeline - 1.0  workflow which implements the Maximum 
Likelihood analysis pipeline exposes four parameters and so the listCall able Workflow -

Para meters Ex(workflowId, versionId)  operation can show set {name, type, value, 
description} for each of them: 
[  

{ "n ame": "HTTPGet - RequestHeaders", "descriptio n": "A custom HTTP request 

headers to pass to the server. Use col on to separate name and value", "type": 

"java.lang.String", "value": "" } ,  

{ "name": "Align", "description":  "Do full multiple alignment.", "type": 

"java.lang.Boolean", "value": "true" } ,  

{ "name": "SequenceURL", "descripti on": "URL to post the file to", "type": 

"java.lang.String", "value": "ò } ,  

{ "name": " No. of Bootstrap Replications", "description": "", "type": 

"java.lang.Long", "value": "10" }  

]  

This result enables the LVL to present in the UI the name, description and current value of all 
user-defined parameters and also to validate the user input according to type of the parameter. 

The other extension, which improved workflow sharing, was to allow the team of LVL 
developers and e-SC pipelines designers to work independently on different versions of 
workflows. The LVL team could rely on a specific version of a shared workflow, whilst the 
pipeline development team could develop new improved versions without disturbing the work 
of the other side. Then, once a new version of a pipeline became officially released, the LVL 
team could update the version number in the portal. 

2.2.7. PDAS 

The Parallel Data Analysis Service is designed to address big data challenges in the scientific 
domain. It executes data-intensive analysis and I/O, exploiting advanced parallel computing 
techniques and data distribution strategies.  



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 17 of 55 

 

 

In the EUBrazilCC project, the PDAS addresses scientific challenges related to Use Case 3 (UC3) 
on Biodiversity and Climate Change. It is exploited both for batch and interactive data analysis 
on NetCDF 2 (Network Common Data Form), LiDAR and remote sensing data.  

To address the data analytics requirements and support the processing pipelines of the UC3, 
several new features have been developed in the context of the project, among these are:  

Á Operators that work on the NetCDF format: i.e. to import data with spatial subsetting, 
concatenate datasets and export processed data in parallel; 

Á Operators to allow data inspection and on-the-fly exploration of time series;  

Á An operator to run scripts regarding the interaction with external tools; 

Á An operator to manage data provenance (to track the history of a dataset); 

Á Operators to compare data (e.g. historical data with future scenarios) and to combine 
different measures for autocorrelation analysis; 

Á Math functionalities to compute accumulated values, linear regression, cubic spline 
interpolation, Pearson correlation and to perform data reduction by computing 
statistical values such as standard deviation, variance, central moment, absolute central 
moment, raw moment, absolute raw moment and quantiles. 

Besides the previous extension, the import process has been optimized to reduce the time 
required to import datasets like SEBAL output data and the operator to manage generic query 
has been enhanced to automatically manage more complex data analytics operations. 

To integrate the PDAS in the EUBrazilCC infrastructure, some Cloud-based scenarios have been 
implemented and the functionalities hav been introduced to deploy PDAS instances in 
federated private cloud environments. These extensions use the Infrastructure Manager REST 
API3 to deploy, manage and un-deploy PDAS clusters. 

Additionally, two new PDAS server interfaces have been developed to address interoperability: 
a GSI/VOMS and a REST interfaces. The former, a GSI/VOMS enabled interface, supports both 
X.509 certificates and VOMS-based authorisation and addresses the interoperability with the 
EGI Fed Cloud environment. In particular, authorisation mode can be based on: a local Access 
Control List (local mode), VOMS attribute (global mode) or a combination of both the methods 
(combined mode). This interface has been specifically developed to comply with the security 
framework adopted in EUBrazilCC. The REST interface, instead, provides a programmatic 
RESTful access to the PDAS functionalities. 

 Description of the usage scenarios  

EUBrazilCC platform exposes several possible usage scenarios: 

1. Basic instantiation of a predefined VMI.  

                                                      
2 http://www.unidata.ucar.edu/software/netcdf/ 
3 http://www.grycap.upv.es/im/doc/REST.html 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 18 of 55 

 

 

2. Instantiation and configuration of multiple VMs from basic VMIs. 

3. Running batch jobs on clusters or cloud deployments. 

4. Running an application on the cloud in parallel using COMPSs. 

5. Deploying a workflow engine for the execution of a fine grain heterogeneous workflow 
on the cloud. 

6. Deploying a customized PDAS cluster for data analytics. 

In order to access the infrastructure, a user must has to provide a valid EUBrazilCC VOMS proxy, 
which can be obtained from the wiki4. For each one of the previous scenarios, the user will also 
need additional information. A VOMS proxy can be created using the command: voms-

proxy - init -- voms eubrazilcc -- valid 48:0 -- out proxy_eubrazilcc.  

2.3.1. Basic instantiation of a predefined VMI 

A VMI can be instantiated by using the fogbow-cli tool (which can be downloaded from the 
client section in the website5) or a fogbow dashboard (also available in the dashboard section 
of the website6) or directly accessed at the production instance7. If an own installation is used 
(both client and dashboard), the URL of a running fogbow-manager must be known (e.g. 
https://fbgrycap.i3m.upv.es:8182  is the address of the fogbow manager at the 
UPV). If an existing portal is used, this information would be already properly configured. 

Additionally, the user must know the name of the VMI to be deployed. VMIs are stored on the 
EGI application database8. VMIs are cached at all the EUBrazilCC deployments using vmcatcher9. 
¢ƘŜ ǘŀƎ άƭƻŎŀƭ ƴŀƳŜέ ƛƴ ǘƘŜ AppDB defines the local name used for the VMI in all the 
deployment. If the user wants to use a VMI not registered in the AppDB, she can specify a 
downloadable URL where the VMI is stored. The first time the VMI will be downloaded, and 
further requests will not download again the image if it is not updated in the source.  

Finally, a user should provide a public key for logging in the VM. A public key can be created 
using the ssh - keygen  command.  

Figure 7 shows the portal usage. A sample command for the fogbow client would be: 

fogbow - cli request -- create -- n 2 -- image fogbow - ubuntu -- flavor small 

-- url http://fbgrycap.i3m.upv. es:8182 -- public - key ~/.ssh/id_rsa.pub  

                                                      
4 https://eubrazilcc-voms.i3m.upv.es:8443/voms/eubrazilcc 
5 http://www.fogbowcloud.org/fogbow-cli.html 
6 http://www.fogbowcloud.org/fogbow-dashboard 
7 http://ufcg-servers.dashboard.fogbowcloud.org/ 
8 https://appdb.egi.eu/store/vo/eubrazilcc.eu 
9 https://appdb.egi.eu/store/software/vmcatcher  

https://eubrazilcc-voms.i3m.upv.es:8443/voms/eubrazilcc
http://www.fogbowcloud.org/fogbow-cli.html
http://www.fogbowcloud.org/fogbow-dashboard
http://ufcg-servers.dashboard.fogbowcloud.org/
https://appdb.egi.eu/store/vo/eubrazilcc.eu
https://appdb.egi.eu/store/software/vmcatcher


 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 19 of 55 

 

 

 
Figure 7: Deploying VMIs using the fogbow dashboard 

2.3.2. Instantiation and configuration of multiple VMs from basic VMIs. 

IM exposes three interfaces: A web portal, a command line interface and a Python API. In order 
to use IM, a server instance must be deployed. A default server instance is available for 
production 10  but any user can install one locally following the instructions in the 
documentation11. A Docker ƛƳŀƎŜ ƛǎ ŀƭǎƻ ŀǾŀƛƭŀōƭŜ ŦƻǊ ǳǎŜǊǎΩ ŎƻƴǾŜƴƛŜƴŎŜ in Docker hub12. A 
client can point out to the server instance by following the instructions in ǘƘŜ άŎƻƴŦƛƎǳǊŀǘƛƻƴέ 
section of the IM documentation. 

IM uses the Resource and Application Description Language (RADL) to define virtual 
infrastructures and software configurations. Description on RADL is provided in the IM 
documentation. Along with the hardware requirements, users can define software packages to 
be installed, configuration files to be updated, environment variables and any other additional 
action using Ansible13 language. Examples of RADL on the user applications are provided in 
deliverable D5.3. 

Once available, the user should include the location of an EUBrazilCC VOMS proxy in the 
authorisation file, as well as the location of the fogbow manager endpoint to be used as entry 
to the federation. The next block shows a configuration line for fogbow.  

id= eubcc; type = FogB ow; proxy = f ile(/tmp/eubccproxy.pem)  ; 

host = https://fbgrycap.i3m.upv.es:8182 ; token_type = VOMS  

The other information required for deploying a VMI is the local name or location of the VMI, 
ǎǇŜŎƛŦƛŜŘ ƛƴ ǘƘŜ άŘƛǎƪΦлΦƛƳŀƎŜΦǳǊƭέ ǘŀƎ ƻŦ ǘƘŜ w!5[ ŦƛƭŜΦ Images should be preceded by the 

                                                      
10 http://servproject.i3m.upv.es/im/ 
11 http://www.grycap.upv.es/im/documentation.php 
12 https://registry.hub.docker.com/u/grycap/im/ 
13 www.ansible.com 

http://servproject.i3m.upv.es/im/
http://www.grycap.upv.es/im/documentation.php
https://registry.hub.docker.com/u/grycap/im/


 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 20 of 55 

 

 

άŦōǿΥκκέ ǇǊŜŦƛȄ ǘƻ ƛƴŘƛŎŀǘŜ ǘƘŜ ǳǎŜ ƻŦ ŀ ŦƻƎōƻǿ ŜƴŘǇƻƛƴǘ όŜΦƎΦ ŘƛǎƪΦлΦƛƳŀƎŜΦǳǊƭ Ґ 
ΨŦōǿΥκκlocalnameΩύΦ The RADL should include a username entry, but not a password, as fogbow 
uses certificate-based authentication. An example RADL is provided in Figure 8. 

network publica (outbound = 'yes')  

 

system node (  

cpu.arch='x86_64' and  

cpu.count>=1 and  

memory.size>=512m and  

net_interface.0.connection = 'publica' and  

net_interface.0.dns_name = 'testnode' and  

disk.0.image.url = 'one://ramses.i3m.upv.es/95' and  

disk.0.os.credentials.username = 'ubuntu' and  

disk.0.os.credentials.password = 'yoyoyo' and  

disk.0.os.name = 'linux'  

)  

 

deploy node 1  

Figure 8: Deploying VMIs on fogbow using IM.  

Summarizing, in order to deploy a coordinated installation of multiple VMs, the user must: 

Á Have access to an IM server and a fogbow manager. Default values could be 
http ://servproject.i3m.upv.es:8899  for the IM server and 
https://fbgrycap.i3m.upv.es:8182  for the fogbow manager.  

Á Have a valid VOMS proxy available in a file accessible from the machine that will run the 
client (see 3.1 for details). 

Á Have access to an IM client or the catch-all IM web portal service at 
http://servproject.i3m.upv.es/im/. 

Á Write a RADL file including the name of the VMI that should be deployed (see 3.1.1 for 
details on the VMI name). 

Á If the IM CLI is used, an authentication file must be provided including the fogbow 
credentials and the fogbow manager endpoint. 

Finally, and in order to login the machine, the user has to get the information from the virtual 
machine. This can be obtained with the getinfo  command of IM. 

im_client.py  - u http://servproject.i3m.upv.es:8899 - a auth.dat getinfo 

6d16a8d2 - bf55 - 11e5 - a466 - 300000000002  

Then, you can copy the private key to a file, give it the proper permissions, and log in the 
machine using the username, IP and port provided, as in: 

ssh - i private_key fogbow@158.42.104.75 - p 20001  

http://servproject.i3m.upv.es/im/


 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 21 of 55 

 

 

Once completed, the infrastructure can be released with the destroy  command.  

2.3.3. Running batch jobs on clusters or cloud deployments 

To run jobs, an environment with the following components must be configured: 

Á mc2 engine 

Á OpenBus 

Á CSGrid 

Á a SGA to the cluster enviroment 

Á a SGA interating with a Fogbow Manager 

In the CSGrid, the algorithm abstraction encapsulates the binaries that will be executed in the 
target computational resource. TƘǊƻǳƎƘ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ parameters, the user can customize 
the binaries execution ς for example ƛƴŦƻǊƳƛƴƎ ōƛƴŀǊȅΩǎ ŀǊƎǳƳŜƴǘǎΣ ǎŜǘǘƛƴƎ ǳǇ ǘƘŜ ŜƴǾƛǊƻƴƳŜƴǘ 
and more. Thus an algorithm execution is tied to a job execution in the target computational 
resource, that could be a node in a cluster environment or a VM in a cloud environment. 

The mc2 engine act as a front end of the infrastructure stack, and through it the users can submit 
jobs, obtain the status of the computational resources, monitor jobs executions etc. 

So, these are the steps a user must perform to execute a job: 

1. Authenticate in the mc2 using a VOMS proxy (Figure 9: Log in). 

2. Select an application (CSGrid algorithm) to run. 

3. Parameterize the application. 

4. Select the resource in which the application will be executed (optional). 

5. Request the job execution. 

The CSGrid forwards the VOMS proxy during the job's submission, in order to authenticate the 
user in the underlining computational resources ς for instance, the Fogbow Manager requires 
the proxy to allocate a VM in the federation that the user has permission. 



 

FP7-614048 
CNPq 490115/2013-6 

 

 

 

D5.4 ς Validation Report 

  
Page 22 of 55 

 

 

 
Figure 9: Log in 

 

 
Figure 10: Job parameterization and execution 

2.3.4. Running a parallel application on the cloud using COMPSs. 

COMPSs programmers do not need to deal with the typical duties of parallelization and 
distribution, such as thread creation and synchronization, data distribution, messaging or fault 
tolerance, thus eliminating most of the difficulties of concurrent/distributed programming. A 
task is a method or a service called from the application code that is intended to be spawned 
asynchronously and possibly run in parallel with other tasks on a set of resources, instead of 
locally and sequentially.  
































































